PC模拟Jetson(Jetpack)运行环境

硬件平台

HUAWEI Matebook 14

CPU:Intel® Core™ i5-8265U CPU @ 1.60GHz × 8

GPU:GeForce MX250/PCIe/SSE2 / GeForce MX250/PCIe/SSE2

img

操作系统

推荐:Ubuntu 18.04 LTS

Nvidia显卡驱动安装

  1. 更换国内的系统源,推荐Aliyun源

  2. update, upgrade

    1
    2
    sudo apt update
    sudo apt upgradeCOPY
  3. 加入N卡驱动源

    1
    2
    sudo add-apt-repository ppa:graphics-drivers/ppa
    sudo apt-get updateCOPY
  4. 查看显卡驱动,会列出当前的显卡和可安装的驱动

  5. ubuntu-drivers devicesCOPY
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    ```bash
    jason@Jason-Matebook:~$ ubuntu-drivers devices
    == /sys/devices/pci0000:00/0000:00:1c.0/0000:01:00.0 ==
    modalias : pci:v000010DEd00001D13sv000019E5sd00003E0Abc03sc02i00
    vendor : NVIDIA Corporation
    model : GP108M [GeForce MX250]
    driver : nvidia-driver-440 - distro non-free recommended
    driver : nvidia-driver-435 - distro non-free
    driver : xserver-xorg-video-nouveau - distro free builtinCOPY
  6. 直接安装推荐的驱动

    1
    sudo ubuntu-drivers autoinstallCOPY
  7. 安装完重启:

    1
    sudo rebootCOPY
  8. 查看一下显卡信息:

    1
    nvidia-smiCOPY
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    Sat Jul 11 11:39:23 2020       
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2 |
    |-------------------------------+----------------------+----------------------+
    | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
    | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
    |===============================+======================+======================|
    | 0 GeForce MX250 Off | 00000000:01:00.0 Off | N/A |
    | N/A 46C P0 N/A / N/A | 228MiB / 2002MiB | 0% Default |
    +-------------------------------+----------------------+----------------------+

    +-----------------------------------------------------------------------------+
    | Processes: GPU Memory |
    | GPU PID Type Process name Usage |
    |=============================================================================|
    | 0 976 G /usr/lib/xorg/Xorg 61MiB |
    | 0 1540 G /usr/lib/xorg/Xorg 70MiB |
    | 0 1784 G /usr/bin/gnome-shell 88MiB |
    +-----------------------------------------------------------------------------+
    COPY

如果有信息显示出来,就说明安装成功

环境检查

1.验证自己的电脑是否有一个可以支持CUDA的GPU:

你可以在电脑的配置信息中找到显卡的具体型号,如果你是双系统,在windows下的设备管理器中也可以查到显卡的详细信息;在ubuntu下面的话,你可以通过下面这行命令来简单查看一下NVIDIA GPU版本信息:

1
2
3
4
lspci | grep -i nvidia

jason@Jason-Matebook:~$ lspci | grep -i nvidia
01:00.0 3D controller: NVIDIA Corporation GP108M [GeForce MX250] (rev a1)COPY

2.验证自己的linux版本是否支持CUDA:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
uname -m && cat /etc/*release

jason@Jason-Matebook:~$ uname -m && cat /etc/*release
x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04 LTS"
NAME="Ubuntu"
VERSION="20.04 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal
UBUNTU_CODENAME=focalCOPY

3.验证系统是否安装了gcc

1
2
3
4
5
6
7
gcc --version

jason@Jason-Matebook:~$ gcc --version
gcc (Ubuntu 9.3.0-10ubuntu2) 9.3.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.COPY

其实这个刚装完系统的话应该都装好了,但是为了保险起见,你还是可以查看一下,如果你没有安装的话,你可以采取下面的命令对其进行安装:

1
sudo apt-get install build-essentialCOPY

4.验证系统是否安装了kernel header和package development:

a.查看正在运行的系统内核版本:

1
2
3
4
uname -r

jason@Jason-Matebook:~$ uname -r
5.4.0-40-genericCOPY

b.安装对应kernel版本的kernel header和package development:

1
2
3
4
5
6
7
8
9
sudo apt-get install linux-headers-$(uname -r)

jason@Jason-Matebook:~$ sudo apt-get install linux-headers-$(uname -r)
正在读取软件包列表... 完成
正在分析软件包的依赖关系树
正在读取状态信息... 完成
linux-headers-5.4.0-40-generic 已经是最新版 (5.4.0-40.44)。
linux-headers-5.4.0-40-generic 已设置为手动安装。
升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 0 个软件包未被升级。COPY

这个的话表示系统中已经有了,不用重复安装。

如果以上各项检查均满足要求的话,接下来就可以正式地进入安装界面了,如果有些地方没有满足要求的话,你需要参考cuda的官方文档,里面有详细的针对每个问题的解决方案。在以下链接中可以找到:https://docs.nvidia.com/cuda/

安装CUDA

CUDA11.1安装:CUDA 工具包 11.1 下载 | NVIDIA Developer

根据自己的操作系统、构架、发行版本、系统版本选择

比如我选择的是:Linux->x86_64->Ubuntu->18.04->deb(network)

然后执行:

1
2
3
4
5
6
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo apt-get update
sudo apt-get -y install cudaCOPY

配置环境变量

输入gedit ~/.bashrc命令打开文件,在文件结尾输入以下语句,保存。

1
2
export PATH=/usr/local/cuda-11.2/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}COPY

至此cuda安装完成,输入nvcc -V命令查看cuda信息。

1
2
3
4
5
6
jason@Jason-Matebook:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Thu_Jun_11_22:26:38_PDT_2020
Cuda compilation tools, release 11.2, V11.2.194
Build cuda_11.2_bu.TC445_37.28540450_0COPY

安装cuDNN

cuDNN安装:cuDNN Download | NVIDIA Developer

根据自己的系统版本下载deb安装包直接安装。

例如我下载的是:

cuDNN Runtime Library for Ubuntu18.04 x86_64 (Deb)

cuDNN Developer Library for Ubuntu18.04 x86_64 (Deb)

cuDNN Code Samples and User Guide for Ubuntu18.04 x86_64 (Deb)

安装顺序:

1
2
3
sudo dpkg -i libcudnn8_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-dev_8.0.5.39-1+cuda11.1_amd64.deb
sudo dpkg -i libcudnn8-samples_8.0.5.39-1+cuda11.1_amd64.debCOPY

安装cuDNN额外依赖

1
2
sudo apt-get update
sudo apt-get upgrade -yCOPY

安装TensorRT

TensorRT 7安装:NVIDIA TensorRT 7.x Download | NVIDIA Developer

根据自己的系统版本CUDA版本下载deb安装包直接安装。

例如我下载的是:

TensorRT 7.2.2 for Ubuntu 18.04 and CUDA 11.1 & 11.2 DEB local repo package

安装:

1
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.1-trt7.2.2.3-ga-20201211_1-1_amd64.debCOPY

安装TensorRT额外依赖

1
2
sudo apt-get update
sudo apt-get upgrade -yCOPY

部署jetson-inference

详细教程查看:jetson-inference

1
2
3
4
5
6
7
8
9
10
$ sudo apt-get update
$ sudo apt-get install git cmake libpython3-dev python3-numpy python3-opencv
$ git clone --recursive https://github.com/dusty-nv/jetson-inference
$ cd jetson-inference
$ mkdir build
$ cd build
$ cmake ../
$ make -j$(nproc)
$ sudo make install
$ sudo ldconfigCOPY

PC模拟Jetson(Jetpack)运行环境
https://jason-xy.github.io/2021/01/pc2jetpack/
Author
Jason Hsu
Posted on
January 29, 2021
Licensed under